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The Problem

A Non-convectivewinds cause fatalities in the U.S.
every year

A They can occur with clear, sunny skiessople
continue dally activities despite the risk

A Most fatalities occur in vehicles or outdoors
where objects can be blown over

A More than 83%of allnon-convective wind
fatalities areassociated withthe passage of
extratropicalcyclones

(Ashley and Black 2008)
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Fatalities due to various winklated hazards,
19802005 Tropical system fatalities only
include deaths due to wind
(Ashley and Black 2008)
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Notable NorConvective Wind Events

Date

Min. Man.
S5LP wind
{hPa) gust

Location {m-s) Fatalities

Damage

Comments

5-7 Febnuary
1978

30-3
October 1991

29 November
1991

12=13 March
1993

10 Novernber
1908

10-11 Auvgust
2000

25-27
COctober 2010

Mew England Q84 4 13
LSA

Eastern q72 35 5
Morth America

Southern 1003 34 17
Califomia

Eastern LUISA G960 45 300

Great Lakes 963 42 10

Barrow, Alaska G989 33 LH]

Upper Migwest 855 35 1
L5,

(Knox et al. 2011)
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High winds and record snowdall
produced one of the most
memorable blizzards in US history;
tides 3-4 feet above normal; coastal
flooding and erosion; numerous
lighthouses damaged

"The Perfect Storm'; a strong coastal
oyclone joined with the remnants of
Hurricane Grace; wave heights
reached 35 feet; long-duration event
{114 h) with high wind and waves
extending over 3500 km of coastline

High winds ower the San Joaquin
Valley produced a major dust storm
that resulted in multiple collsions
imvolving 164 cars along sections of
Interstate-5

"Superstomm’” or "Storm of the
Century’; blizzard conditons in New
England, high winds, westerly gales
behind cold front across mid-Atlantic
and southem U5A; coastal erosion
from Florida to New England

“Witch of November'; exactly 23 years
to the day of the 1975 storm that
sank the Edmund Fitzgerald

Record winds at Bamow; $6 million
dreage cestroyed, 40 buildings
unmoofed; Prudhoe Bay recorded
near-100-year storm sunge

One of most intense extratropical
cyclones on record in lower 48
United States; widespread high
winds across upper Midwest
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tober 26-27, 2010: Maximum Wind Gusts

eSS Observations in mph and include ASOS, AWOS,
mesonet, and other surface measurements
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Figure fromDuluth, MN NWS
SPAnr Examples of Damage with European Storms



http://www.crh.noaa.gov/dlh/?n=101026_extratropicallow
http://www.bbc.co.uk/news/uk-scotland-16392381

Extreme Event 287 Oct 2010

Howwould this imagery help you anticipate strong winds?
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The Problem

A Intenseextratropicalcyclones are often
associated with noftonvective high winds

A There is no commonly accepted explanation for
non-convective high winds but physical
explanations include:

Topography
Isallobaridwind
Tropopause Folds

The Sting Jet (Knox et al. 2011)
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Stratospheric Intrusions
& Tropopause Folds

A Sratospheric intrusions anttopopausefolds can
be identified by the presence of high potential
vorticity and warm, dry, ozorach air

Tropopause Fold Sampled by HIAPER

First research flight of HIAPER, 2005-12-01

Stratosphere

GFS derived PV=2 surface, 182

(Image by Laura Pan, NCAR, in collaboration with
(Danielson 1968) Kenneth Bowman of Texas A&M University.)
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Potential Vorticity

A Potential vorticity is a measure of the ratio of
absolute vorticity to the depth of the vortex

I The effective depth is the distance between

: , W9
potential temperature surfaces D
A MO | nite
8 Units:

P=g(z, +f)agg —
9( q )é% o = PV=10m?stK kg'=1PV unitor 1 PVU

I PV is the product adbsolute vorticityand static
stabllity
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Potential Vorticity

A Potential vorticityincreases
rapidly from the troposphere
to stratospheredue to the
change in static stability

A 1.5 to 2 PVUepresent the
dynamictropopause

A Anabruptfolding or lowering |
of the dynamidropopausecan |
also becalled an uppeilevel

PVanomaly i c cyclonic flow s,

A Tropopause folding isiost ; »
vigorousduring thewinter and | HORZONTAL DISTANCE O @
spring andis closely related to Bluestein (1993, Synoptic
strong uppertropospheric jet Dynamic Met., vol. 1)
streaks
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Potential Vorticity

A High potential vorticityin the stratosphereis
attributed to large static stability

I Diabatic heatingdue to ozone in the stratosphere
| Cooling dueo longwave radiation in the troposphere

A PV anomaliecan be identified as dark regions on
water vapor imagery due tow relative humidity
values

A Will assimilationof satellitetemperature and
moisture profilesimprove model representationof
stratospheric intrusions/folds?
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The Sting Jet

A The Sting Jet israesoscalgghenomenon believed to cause damaging
winds in Oceanic/European cyclones

Can produce hurricane force wind speeds

Global distribution of Stinget cyclones is unknown (Martinétvarado et
al. 2012)

To o

5STAYSR |da dl OOSt SN UAy3IZT RNEAY
cloud head beneath the dry intrusioMartinezAlvarado et al. 2012)

(b) AN N
“CLOUD == B
“HEAD S,

Damagingvinds - x 4 RQS/Q

originate from NGJ Wy

the tip of the | .{t].

comma head || A '.“,::T.:. T CCB_I‘ — .

(Clark et al. 2005) wincis
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How Can the Sting Jet be Identified?

A The release of Conditional Symmetric Instability (CSI)

I CSlis a moist instability that occurs when the atmosphere is stable
vertical and horizontal displacements and unstable to slantwise

displacements
Cloud head
develops a
banded
appearance
and
descent
extends
(Emanuel 1984) | | 51qe scale ascent such 4§ beyond the
frontogenesis and tip of the
Downdraft Slantwise sufficient moisture are cloud head
Convective Available ySOSaal NE C8I2
Potential Energy

(DSCAPHhas been usea \ (Browning 2004)
to diagnose CSl in Sting \ \
Jet cyclones (Martinez

Alvarado et al. 2011) \ \
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